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The equilibration of a symmetrically unstable density front is examined using linear
stability theory and nonlinear numerical simulations. The initial state, chosen to
approximate conditions in the surface ocean, consists of a weakly stratified mixed layer
above a strongly stratified thermocline. Each layer has a uniform horizontal density
gradient and a velocity field in thermal wind balance. The potential vorticity (PV) in
the mixed layer is negative, indicating conditions favourable for symmetric instability.
Once the instability reaches finite amplitude, a secondary Kelvin–Helmholtz (K-H)
instability forms. Linear theory accurately predicts the time and the wavenumber at
which the secondary instability occurs. Following the secondary instability, small-scale
turbulence injects positive PV into the mixed layer from the thermocline and from the
upper boundary, resulting in a rapid equilibration of the flow as the PV is brought
back to zero. While the physical parameters used in this study correspond to typical
conditions near a surface ocean front, many of the conclusions apply to symmetric
instabilities in the atmosphere.

1. Introduction
The stability of an inviscid axisymmetric vortex was first studied by Rayleigh

(1917) who showed that inertial instability can occur when the absolute value of
the angular momentum decreases with radius. While the base state considered by
Rayleigh consisted of a balance between the pressure gradient and the centrifugal
force, inertial instability can also occur when the pressure gradient is in geostrophic
balance with the Coriolis force. Consider a pressure gradient px in the x-direction.
The corresponding geostrophic flow is given by Vg =px/(fρ0). Note that ρ0 is a
reference density used in the Boussinesq approximation, which will be applied here
in both the analysis and the numerical simulations. The Coriolis frequency f will be
assumed to be constant, and Cartesian coordinates will be used for simplicity. Inertial
instability of the geostrophic flow is possible when f ∂M/∂x < 0, where M =Vg + f x

is the absolute momentum. Spatial variations in the fluid density ρ further modify
the instability in the ocean and the atmosphere. In this case, so-called symmetric
instability can occur when f ∂M/∂x|ρ < 0, where the subscript ρ indicates that the
derivative is evaluated along isopycnal surfaces (Holton 1992). When a uniform lateral
density gradient in the x-direction is in ‘thermal wind’ balance with a velocity V (z),
so that Vz =(−g/fρ0)ρx , the criteria for inviscid symmetric instability can be written
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(Stone 1966)

f (∇M × ∇ρ) · ĵ < 0 → M4/f 2 − N2 > 0, (1.1)

where M2 = −(g/ρ0)ρx , N2 = −(g/ρ0)ρz is the buoyancy frequency and ĵ is the unit
vector in the y-direction. The criteria for instability can be cast in terms of the gradient
Richardson number of the base flow, with instability possible if Ri0 = N2/V 2

z < 1.
Symmetric instability can develop at density fronts when the balanced horizontal
density gradient is sufficiently large to overcome the stabilizing influences of the
vertical stratification and rotation.

Alternatively, the criteria for symmetric instability can be expressed in terms of P0,
the Ertel’s potential vorticity (PV), with instability arising when

f P0 =
−f

ρ0

(∇ × Ug + f k̂) · ∇ρ < 0, (1.2)

where Ug is the background geostrophic flow and k̂ is the vertical unit vector. As
pointed out by Thorpe & Rotunno (1989) this presents a paradox: in the inviscid
adiabatic limit for which the instability was first analysed, Ertel’s theorem states
that PV is materially conserved. Therefore, in an unbounded region with f P0 < 0
everywhere, the unstable motions cannot make f P0 = 0, as is necessary to equilibrate
the inviscid instability. This paradox is overcome in real situations where the bulk PV
of a given volume can be changed either through a boundary PV flux or by mixing
with another volume of fluid with a different PV.

Thorpe & Rotunno (1989) examined a symmetrically unstable flow using two-
dimensional numerical simulations. In one case, they considered an initial state with
a uniform negative PV bounded from above and below by flat walls. When the
boundary conditions allowed a flux of PV into the domain, they found that the
volume-averaged PV increased primarily through a viscous flux at the boundaries.
They also considered a situation with an isolated region of negative PV, surrounded
by positive PV fluid. In this case, the symmetric instability broke the unstable region
into smaller patches with alternating signs of PV. Eventually, the patches became
small enough that the eddy viscosity and diffusivity used in the numerical model were
sufficient to prevent symmetric instability within each patch. Hence, the entrainment
of high-PV patches into the unstable region stabilized the low modes.

Throughout most of the ocean interior, the stratification is strong enough to prevent
symmetric instability, i.e. f P0 > 0 (O’Dwyer & Williams 1997). Two notable exceptions
are the boundary layers at the top and bottom of the ocean (Allen & Newberger 1998;
Haine & Marshall 1998), where turbulent mixing is strong enough to greatly reduce,
if not eliminate, the stratification. Without the stabilizing influence of stratification,
lateral density gradients can generate negative PV anomalies more readily, i.e. M4/f 2

overcomes N2 in (1.1). Recently, regions with negative PV have been observed at
strong fronts in the surface mixed layer (Thomas & Lee 2005).

In the absence of sharp density fronts, inertial instability can also occur at low
latitudes where f is small (see e.g. Hua, Moore & Gentil 1997; Dunkerton 1981;
Griffiths 2003a ,b). Griffiths (2003b) invoked a secondary Kelvin–Helmholtz (K-H)
instability to explain why the scale associated with equatorial inertial instabilities was
larger than predicted by linear theory. The numerical simulations of Griffiths (2003b)
did not directly resolve the K-H billows but used a shear adjustment scheme to
parameterize their effect. The parameterized momentum mixing acted like an effective
viscosity on the large scales and increased the wavelength of the most unstable mode.
One important constraint was the use of a vertically periodic domain with a constant
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background vertical stratification. With this assumption, vertical fluxes induced by the
K-H instability were unable to change the bulk properties of the system. There was
also a very large-scale separation between the size of the K-H-induced turbulence and
the meridional extent of the unstable zone. Therefore, the equilibration mechanism
proposed by Thorpe & Rotunno (1989) of entraining small patches of positive PV
was not very effective. In the configuration considered by Griffiths (2003b), it appears
that the K-H instability was not able to directly aid in the equilibration of the flow.

Despite the progress made by previous studies, questions remain as to how
symmetrically unstable flows in the ocean and atmosphere equilibrate. The goal
of this study is to examine the equilibration of a symmetrically unstable front with
f P0 < 0. We propose a new mechanism for this equilibration, namely enhanced vertical
fluxes induced by the secondary K-H instability. In the ocean and atmosphere, the
thermocline and the stratosphere represent ubiquitous reservoirs of high-PV fluid.
The turbulence that is expected to develop from the K-H instabilities can be quite
effective at mixing in the vertical direction and can rapidly equilibrate a symmetric
instability by exchanging fluid with the high-PV reservoir.

2. Linear stability analysis
A linear stability analysis for a symmetrically unstable front can be used to

estimate when secondary shear instabilities will develop. Consider a background
density field ρ = −(ρ0/g)(M2x + N2z) with a velocity Ug =V (z)ĵ in thermal wind
balance. For simplicity, the base velocity has no vertical relative vorticity. Small
amplitude perturbations to the base flow, u′(x, z, t) and ρ ′(x, z, t), are assumed to
be independent of the y (along-front) direction. The assumption of along-front
homogeneity effectively excludes baroclinic instabilities from this system. Stone (1970)
showed that when 0.25 <Ri0 < 0.95, the y-independent symmetric modes are the
fastest-growing instabilities. By linearizing the governing equations with respect to
the basic state, assuming that the perturbations are hydrostatic, and using a normal
mode form in an infinite domain, i.e.

u′ = u0e
ikx+imz+σ t , (2.1)

the growth rate of the unstable symmetric modes is found to be (Stone 1966)

σ =

(
M4

N2
− f 2 − N2

(
k

m
− M2

N2

)2
)1/2

− ν
(
k2 + m2

)
. (2.2)

Note that when ν = 0, σ depends on k and m only through the perturbation slope
k/m. In this case, the maximum growth rate is associated with k/m = M2/N2, i.e.
the most rapidly growing perturbations are aligned with isopycnals. Friction tends to
stabilize the shortest modes and acts to slightly reduce the slope of the most unstable
mode. This can be shown by expanding σ in a Taylor series about the inviscid slope,
s = s0 + ν/(H 2|f |)s1 + · · ·, where s0 = M2/N2 and ν/(H 2|f |) is the small parameter
for the expansion (likely to be very small in real oceanographic and atmospheric
applications where ν is the molecular viscosity). The slope of the most unstable mode
for fixed m is given by

smax � M2

N2

[
1 − 2|f |νm2

N2

(
1

Ri0
− 1

)1/2

+ · · ·
]

, (2.3)

which is less than s0 for unstable modes with Ri0 < 1.
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At a density front with a non-vanishing vertical stratification, the isopycnals are
inclined from the vertical. As the along-isopycnal velocity associated with symmetric
instability grows in amplitude, so will the vertical shear associated with the slanting
motions. We showed that at leading order in ν/(|f |H 2), the most unstable mode is
associated with motions primarily along isopycnals and hence does not affect the
density field, i.e. ρ ′

z � 0. The minimum gradient Richardson number associated with
along-isopycnal velocity perturbations is

Rig � min

(
N2

u′2
z + (v′

z + Vz)2

)
� N2

u2
0m

2Ri−1
0 e2σ t + 2|Vzu0m|

(
Ri−1

0 − 1
)1/2

eσ t + V 2
z

.

(2.4)

The Miles–Howard theorem states that K-H instability is possible when Rig < 1/4
somewhere in the flow. A linear mode with an initial amplitude u0 and a vertical
wavenumber m can therefore be expected to first become K-H unstable at a time

tKH =
1

σ
ln

(∣∣∣∣Vg

u0

∣∣∣∣
)

+
1

σ
ln

(
Ri0

mH

(√
3 −

√
Ri−1

0 − 1
))

, (2.5)

where Vg = VzH . Note that (2.5) applies only when 0.25 < Ri0 < 1 since when
Ri0 < 0.25 the initial state will be directly unstable to K-H, and for Ri0 > 1 the flow
will be stable to the primary symmetric instability. The first term on the right-hand
side of (2.5) is the time at which the symmetric instability reaches finite amplitude, i.e.
|u′| � Vg . Even for the smallest possible value of the vertical wavenumber, m = 2π/H ,
the second term on the right-hand side of (2.5) is negative in the relevant range
0.25 <Ri0 < 1. Therefore, the secondary K-H instability will always occur before the
symmetric motions become fully nonlinear. For a given initial amplitude distribution
u0(k, m), (2.5) can be minimized numerically to find the first mode to become K-H
unstable. In the next section, we show that this result compares well with the onset
of K-H instability in the nonlinear numerical simulations.

3. Numerical simulations
3.1. Setup

In order to test the hypothesis that the secondary K-H instabilities can stabilize
a developing symmetric instability, we have conducted numerical simulations of
a symmetrically unstable region bounded from above by a free-slip surface and
bounded from below by a region with a large positive PV. A very fine mesh grid was
used to explicitly resolve the K-H billows. Such a fine resolution would be prohibitive
in a three-dimensional simulation and we therefore neglect variations in the along-
front direction, as in several previous studies (e.g. Thorpe & Rotunno 1989; Griffiths
2003b). The parameters used for the simulations reflect conditions typical of a front
in the oceanic mixed layer, although the conclusions also apply to dry symmetric
instability in the atmosphere. (We will not consider the influence of moist processes
that are likely important in the troposphere.)

The initial state consists of two layers, a weakly stratified surface mixed layer
from −50 m< z < 0 and a strongly stratified thermocline from −100 m <z < − 50 m,
each with a uniform vertical density gradient. In order to mimic a lateral front,
a constant background horizontal density gradient is used so that the isopycnal
slope is γML = M2/N2

ML = 0.047 in the mixed layer and γ∞ = M2/N2
∞ = 0.0047 in

the thermocline. Based on the initial vertical density gradient and the thermal wind
shear, the initial gradient Richardson numbers for the upper and lower layers are
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N 2
ML = 9 × 10−6 s−2 N 2

∞ = 9 × 10−5 s−2 M2 = −4.2 × 10−7 s−2 f = 10−4 s−1

P0,ML = − 9.2 × 10−11 m−1 s−1 P0,∞ = 7.3 × 10−10 m−1 s−1 ν = 10−4 m2 s−1 κ = 10−4 m2 s−1

Table 1. Simulation parameters. Subscript ML denotes a property of the mixed layer,
subscript ∞ denotes a property of the thermocline.

RiML =N2
MLf 2/M4 = 0.5 and Ri∞ =N2

∞f 2/M4 = 5, so that the base flow is stable with
respect to K-H instability everywhere, but is unstable to symmetric instability in the
upper layer. Dimensional parameters used in the simulation are listed in table 1.

The initial velocity field consists of a thermal-wind balanced velocity V (z) and
a white noise with an amplitude of 10−4 m s−1 added to perturb the initial state.
Before starting the simulations, the velocity field is projected onto a divergence
free subspace. In order to simplify the boundary conditions, the density field is
decomposed into a linear background gradient and a perturbation from that state:
ρ(x, z, t) = ρB(x) + ρ ′(x, z, t). Periodic boundary conditions are applied in the x-
direction to ρ ′ and u′, while ρB(x) and V (z) are assumed to be constant in time.
Although the background horizontal density gradient is kept fixed, the PV of the
mixed layer is able to increase by developing correlations between vorticity and
density gradients (see (1.2)). The use of periodic lateral boundary conditions allows
us to avoid inflow/outflow conditions, which are very difficult to impose for turbulent
flows such as those that are of interest here.

The domain sizes of Lx =1 km and Lz = 100 m were chosen to be large
enough to accommodate the most unstable symmetric mode. A uniform grid of
(Nx, Nz) = (1024, 128) points was used, which is sufficient to resolve the K-H billows.
The top and bottom boundary conditions are no normal flow with the vertical
gradients of the total density and velocity set to the initial state, i.e.

uz = 0, vz = M2/f, w = 0, ρz = (−ρ0/g)N2
∞ @ z= −H

uz = 0, vz = M2/f, w = 0, ρz = (−ρ0/g)N2
ML @ z= 0

}
. (3.1)

These boundary conditions were chosen to minimize the influence of boundary
forcing on the flow at early times. Note, however, that since the density gradients at
the upper and lower surfaces differ, both density and potential vorticity are fluxed
into the domain.

The Boussinesq non-hydrostatic governing equations are solved using a CFD code
described in detail in Taylor (2008). Derivatives in the horizontal direction are treated
with a pseudo-spectral method while vertical derivatives are treated with second-
order finite differences on a staggered grid. Time stepping is mixed implicit/explicit
with viscous terms calculated using Crank–Nicolson and all other terms treated with
a low-storage third-order Runge–Kutta method. In order to stabilize the numerical
simulations, a constant viscosity of ν = 10−4 m2 s−1 is used. Since the viscosity is
two orders of magnitude larger than the molecular value, the simulations can be
considered as either being at a low Reynolds number or using an eddy viscosity to
represent unresolved turbulence. Taking the latter view, the Prandtl number is set to
Pr = 1. This is consistent with unstratified turbulent scaling and is chosen since the
unresolved scales in the simulations are less than 1 m where stratification should not
play a dominant role.
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Figure 1. Temporal evolution of root mean square cross-front velocity (solid line) and the
fraction of points with Rig < 0.25 (dashed curve), both averaged throughout the mixed layer,
−50 m <z < 0.

3.2. Results

Linear stability theory predicts an exponential growth of the symmetrically unstable
modes. The root mean square of the cross-front velocity grows exponentially for
t � 24 h (see figure 1), after which time, the amplitude of the symmetric instability has
become sufficiently large to trigger secondary K-H instabilities. The dashed curve in
figure 1 shows the fraction of gridpoints in the mixed layer where the local gradient
Richardson number Rig is less than 1/4. In order to estimate the initial amplitude
of the most unstable mode, the divergence-free initial velocity field was projected
onto the mixed-layer isopycnal slope and the resulting field was averaged over the
mixed layer. Using this estimated perturbation amplitude of u0 = 9.4 × 10−6 m s−1

and minimizing (2.5) for a fixed disturbance slope with k/m = M2/N2, it can be
predicted that K-H instability first occurs at t � 19.3 h for the mode with horizontal
and vertical wavenumbers kKH � 0.013 m−1 and mKH � 0.27 m−1, in relatively good
agreement with the simulation results. The resulting turbulence extracts energy from
the symmetrically unstable modes and thereby limits their amplitude, as also found
by Griffiths (2003b).

The transfer of energy from the unstable symmetric modes to smaller scales via
the K-H instability can be seen in figure 2(a), where the spectral energy of the cross-
front velocity is plotted as a function of time and the logarithm of the horizontal
wavenumber. The cross-front velocity spectra are computed for each vertical level,
and the spectral energy is then averaged across the mixed layer. For t � 24 h, the
unstable modes grow exponentially, while viscosity damps the highest modes. In § 2
we showed that for ν/(|f |H 2) � 1, unstable symmetric modes have k/m � M2/N2.
The cutoff horizontal wavenumber is then expected to be

k2
c =

f

ν

(
1

Ri0
− 1

)1/2 (
1 +

N4

M4

)−1

+ H −2O

(
ν

|f |H 2

)
. (3.2)

For the parameters used in this simulation, kc � 0.047 m−1. Once K-H instabilities
fully develop at t � 24 h, energy is transferred from the primary symmetric instability
to higher wavenumbers. Note the formation of a secondary peak in energy for
k = 0.2 − 0.3 m−1, which corresponds to the width of the K-H billows. Since the
aspect ratio of the billows is expected to be of the order of one, this is consistent
with the prediction for mKH , the vertical wavenumber of the first symmetric mode to
become K-H unstable.

The onset of the secondary K-H instability coincides with a strong restratification
and an increase in the mean f P0 in the mixed layer. The evolution of the
volume-averaged stratification and PV in the mixed layer is shown in figure 2(b).
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Figure 2. (a) Spectral energy of the streamwise velocity as a function of horizontal
wavenumber and time, averaged over −50 <z < 0; (b) temporal evolution of Ertel’s PV
(grey) and the density gradient (black) averaged throughout the mixed layer. The dashed line
shows the diffusive solution.
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Figure 3. (a) Isopycnals and (b) velocity magnitude immediately preceding and following the
period of active K-H instability, at t = 24 h (grey) and t = 100 h (black). The contour interval
for isopycnals is 0.03 kg m−3 and that for velocity magnitude is 0.01 m s−1.

Note that the choice use of a discontinuous initial density gradient at the base of the
mixed layer and a constant eddy viscosity lead to a large diffusive PV flux at early
times. To quantify this diffusive flux, we have also plotted the change the mixed-layer
PV found by solving one-dimensional diffusion equations for momentum and density
without advection. This demonstrates that nearly all of the PV increase prior to the
onset of K-H is due to diffusion and not the symmetric instability.

After about 40 h, less than 20 h after the onset of K-H, the mixed-layer PV
has nearly reached zero and the mean state is neutral with respect to symmetric
instability. Subsequently, the flow remains symmetrically stable, and the shear that
acted as a source of energy for the K-H instability gradually decays. The instantaneous
isopycnals and velocity magnitude at t = 24 h and t = 100 h, preceding and following
the period of active K-H instability, are shown in figure 3. At both times, the
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Figure 4. Isopycnals at a time just after the onset of the secondary K-H instability. Note that
only a portion of the simulation domain is shown in order to focus on the small-scale features
in the mixed layer.

streamlines are nearly parallel to the isopycnals, suggesting that these motions are
associated with active or decaying symmetric instabilities.

Griffiths (2003b) found that a symmetric mode with scales much larger than the
most unstable linear mode emerged after the onset of the secondary K-H instability.
He argued that this mode was the most unstable when an effective turbulent viscosity
due to the K-H motions was accounted for. We also observe the persistence of a
large-scale mode following the period of active K-H instability, as seen in figures
2(a) and 3. In our simulations, the gravest mode grows in amplitude until t � 40 h,
i.e. when the PV becomes nearly zero and the symmetric instability is cured. This
mode then gradually decays, but does so more slowly than the small-scale modes and
appears to be a ‘fossil’ remnant of the symmetric instability. Although the fossil mode
dominates the flow at late times, PV advection by this mode does not appear to play
an important role in the equilibration of the symmetric instability, as surmised by
Griffiths (2003b). The increase in mixed-layer PV appears to be associated instead
with the K-H instabilities. When the flow is K-H unstable, the advective PV flux
at the base of the mixed layer (〈P ′w′〉 at z = − 50 m) is more than an order of
magnitude larger than it is when t > 100 h and the flow is stable to K-H but a
fossil mode is still present. The persistence of a fossil mode with a larger wavelength
than the most unstable modes is consistent with atmospheric observations. The most
unstable modes are probably difficult to observe, since the onset of the secondary
K-H instability rapidly depletes their energy.

A visualization of the density field is shown in figure 4, at a time immediately
following the onset of secondary K-H instability. The isopycnals in the mixed layer
have become distorted by the symmetric instability, and a few regions of static
instability are visible away from the region where K-H instability has developed.
Although there are regions where the density gradient is very low, the region to first
become K-H unstable is associated with a local shear maximum, but not a local
minimum in the density gradient. Also, note the appearance of density fronts at the
upper surface (figure 4). These surface fronts play an important role in fluxing positive
PV into the mixed layer.
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Figure 5. (a) Temporal change in the depth-integrated mixed-layer PV (solid line) with
approximate fluxes from the thermocline (dashed line) and the upper surface (dash-dotted
line). The increase in integrated PV needed to bring the entire mixed-layer PV to zero
is indicated by a dotted line. (b) Volume-averaged mixed-layer PV for the three different
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The evolution of the horizontally averaged PV can be written as

∂〈P 〉
∂t

= − ∂

∂z

〈
Pw +

1

ρ0

κ∇2ρ((∇ × u) · k̂ + f ) − 1

ρ0

ν
(
∇ρ × ∇2u

)
· k̂

〉
, (3.3)

where < · > denotes a horizontal average. Figure 5(a) shows the relative contributions
of the PV flux to the interior of the mixed layer. Following the secondary K-H
instability, the individual terms on the right-hand side of (3.3) vary over short time
scales. Therefore, obtaining an accurate temporal integration of (3.3) is difficult.
Instead, we rely on the observation that the flux of PV through the bottom of the
domain (z = −100 m) is three orders of magnitude smaller than the PV flux inside
the mixed layer. Therefore, the time-integrated PV flux at z = − 40 m is, to within a
very good approximation,

〈J 〉(z = −40 m, t) � −
∫ t

0

∫ z=−40 m

z=−100 m

(
∂ 〈P 〉 /∂t ′) dz′dt ′. (3.4)

This location (z = − 40 m) was chosen to exclude the diffusive flux at the mixed
layer/thermocline interface. Likewise, the time-integrated flux at the upper surface is
approximately

〈J 〉 (z = 0, t) �
∫ t

0

∫ z=0

z=−100 m

(
∂ 〈P 〉 /∂t ′) dz′dt ′. (3.5)

The PV flux at z = − 40 m accounts for about half of the PV increase after the
onset of the K-H instability, i.e. for t > 24 h. The other half results from frictional
and diffusive fluxes through the upper surface. While the surface boundary conditions
fix the plane-averaged PV to the negative initial value, the PV flux at the surface is
unconstrained. Based on a calculation of the individual terms in (3.3), the diabatic
surface PV flux (the second term on the right-hand side of (3.3)) generally acts to
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decrease the mixed-layer PV. However, the diabatic term is more than compensated
by a frictional flux of PV into the mixed layer (the final term on the right-hand side
of (3.3)), leading to a net increase in PV owing to the surface fluxes.

To further illustrate the role of the boundary PV fluxes on the equilibration of the
mixed-layer PV, two more simulations were conducted. The first simulation used rigid
walls at the top and bottom of the mixed layer. Each wall had the same boundary
conditions as used in the original simulation at z =0. The second simulation started
with high-PV thermoclines above and below the mixed layer. The horizontal and
vertical density gradients in the mixed layer and the thermocline were the same as in
the original simulation. The temporal evolution of the integrated rate of change of
the mixed-layer PV for all three simulations is shown in figure 5(b). Note that in the
simulation with a wall-bounded mixed layer, the PV at the centre of the mixed layer
does return to zero, but since the PV near the walls remains at the initial negative
value, the average is somewhat less than zero. Despite the difference in boundary
conditions, the increase in mixed-layer PV is comparable in all three simulations. It
therefore appears that the rate of PV injection into the mixed layer is largely set by
the mixed-layer instabilities and not by the particular choice of boundary conditions
(as long as a net PV flux is allowed).

4. Discussion
We have examined the evolution of a uniform density front in an ocean mixed

layer with an initially homogeneous negative PV, with the goal of identifying a
mechanism that equilibrates the unstable front. Symmetric instability develops at the
front with motions nearly aligned with isopycnals, but this instability alone does
not significantly alter the bulk PV in the mixed layer. Shortly after reaching finite
amplitude, the slantwise motions associated with the symmetric instability become
unstable to a secondary K-H shear instability. Turbulence induced by the K-H
instability entrains high PV from the thermocline and induces a positive frictional
PV flux at the upper boundary until the mixed-layer PV is brought to zero and the
primary symmetric instability shuts down. These observations support the conclusion
of Thorpe & Rotunno (1989) that regions of negative PV are neutralized through a
combination of turbulent mixing and boundary fluxes. Here, we have identified the
secondary K-H instability as a mechanism by which energy is transferred from the
symmetric instability to small-scale turbulence.

Griffiths (2003b) identified a similar secondary K-H instability in numerical
simulations of an equatorial inertial instability. However, owing to the choice of
periodic vertical boundary conditions, the resulting turbulence was unable to alter
the bulk PV through vertical fluxes. The inertial instability was equilibrated instead
through lateral mixing with the regions of high PV north and south of the equatorial
front; the equilibration process was quite slow, taking between 20 and 30 days
(Griffiths 2003b). In light of the results of the present study, it is possible that with
realistic boundary conditions at the ground and at the tropopause, equatorial inertial
instability could be equilibrated more rapidly by vertical mixing induced by the
secondary K-H instability.

The nonlinear development of symmetric instability is important to the dynamics
of the ocean and atmosphere for several reasons. First, symmetric instabilities might
play an important role in arresting frontogenesis at boundaries. It is well established
that fronts can develop as a result of strain by geostrophic eddies in the ocean
and atmospheric boundary layers. However, it remains an open question as to what
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arrests the formation of the frontal singularities. The PV at these fronts is typically
low and it is plausible to expect that conditions for symmetric instability are often
encountered. Our results suggest that the vertical mixing associated with secondary
K-H instabilities could rapidly equilibrate such fronts since the time scale associated
with the secondary K-H instability is much smaller than that associated with the
mesoscale strain field. In addition, the enhanced vertical fluxes would have important
consequences for the mixing of biological and chemical tracers between the mixed
layer and the thermocline.

It has been speculated that atmospheric frontal rainbands are often associated with
symmetric instability, although one puzzle is that conditions in these regions are most
often neutral with respect to symmetric instability (Emanuel 1988). Enhanced vertical
exchange caused by the secondary K-H instabilities could play a role in rapidly
bringing a region with a negative PV back to a neutral state. We found that a large-
scale ‘fossil’ mode remained long after the symmetric instability was equilibrated. The
persistence of this mode may be analogous to the slantwise-convective motions that
have been observed at near-neutral atmospheric fronts.

This research was supported by NSF grant OCE-0612143 (R. F.). We thank Leif
Thomas and Kerry Emanuel for helpful discussions.
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